Правила умножения чисел со степенями

Сложение, вычитание, умножение, и деление степеней

Правила умножения чисел со степенями

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками.

Так, сумма a3 и b2 есть a3 + b2.
Сумма a3 – bn и h5 -d4 есть a3 – bn + h5 – d4.

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a2 и 3a2 равна 5a2.

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степениодинаковых переменных, должны слагаться их сложением с их знаками.

Так, сумма a2 и a3 есть сумма a2 + a3.

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a3bn и 3a5b6 есть a3bn + 3a5b6.

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Из2a43h2b65(a – h)6
Вычитаем-6a44h2b62(a – h)6
Результат8a4-h2b63(a – h)6

Или:
2a4 – (-6a4) = 8a4
3h2b6 – 4h2b6 = -h2b6
5(a – h)6 – 2(a – h)6 = 3(a – h)6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a3 на b2 равен a3b2 или aaabb.

Первый множительx-33a6y2a2b3y2
Второй множительam-2xa3b2y
Результатamx-3-6a6xy2a2b3y2a3b2y

Или:
x-3 ⋅ am = amx-3
3a6y2 ⋅ (-2x) = -6a6xy2
a2b3y2 ⋅ a3b2y = a2b3y2a3b2y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a5b5y3.

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат – это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a2.a3 = aa.aaa = aaaaa = a5.

Здесь 5 – это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, an.am = am+n.

Для an, a берётся как множитель столько раз, сколько равна степень n;

И am, берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a2.a6 = a2+6 = a8. И x3.x2.x = x3+2+1 = x6.

Первый множитель4anb2y3(b + h – y)n
Второй множитель2anb4y(b + h – y)
Результат8a2nb6y4(b + h – y)n+1

Или:
4an ⋅ 2an = 8a2n
b2y3 ⋅ b4y = b6y4
(b + h – y)n ⋅ (b + h – y) = (b + h – y)n+1

Умножьте (x3 + x2y + xy2 + y3) ⋅ (x – y).
Ответ: x4 – y4.
Умножьте (x3 + x – 5) ⋅ (2×3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых – отрицательные.

1. Так, a-2.a-3 = a-5. Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y-n.y-m = y-n-m.

3. a-n.am = am-n.

Если a + b умножаются на a – b, результат будет равен a2 – b2: то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат, результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a – y).(a + y) = a2 – y2.
(a2 – y2)⋅(a2 + y2) = a4 – y4.
(a4 – y4)⋅(a4 + y4) = a8 – y8.

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a3b2 делённое на b2, равно a3.

Делимое9a3y4a2b + 3a2d⋅(a – h + y)3
Делитель-3a3a2(a – h + y)3
Результат-3y4b + 3d

Или:$\frac{9a3y4}{-3a3} = -3y4$$\frac{a2b + 3a2}{a2} = \frac{a2(b+3)}{a2} = b + 3$

$\frac{d\cdot (a – h + y)3}{(a – h + y)3} = d$

Запись a5, делённого на a3, выглядит как $\frac{a5}{a3}$. Но это равно a2. В ряде чисел
a+4, a+3, a+2, a+1, a0, a-1, a-2, a-3, a-4.
любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются..

Так, y3:y2 = y3-2 = y1. То есть, $\frac{yyy}{yy} = y$.

И an+1:a = an+1-1 = an. То есть $\frac{aan}{a} = an$.

Делимоеy2m8an+m12(b + y)n
Делительym4am3(b + y)3
Результатym2an4(b +y)n-3

Или:
y2m : ym = ym
8an+m : 4am = 2an
12(b + y)n : 3(b + y)3 = 4(b +y)n-3

Правило также справедливо и для чисел с отрицательными значениями степеней.
Результат деления a-5 на a-3, равен a-2.
Также, $\frac{1}{aaaaa} : \frac{1}{aaa} = \frac{1}{aaaaa}.\frac{aaa}{1} = \frac{aaa}{aaaaa} = \frac{1}{aa}$.

h2:h-1 = h2+1 = h3 или $h2:\frac{1}{h} = h2.\frac{h}{1} = h3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $\frac{5a4}{3a2}$ Ответ: $\frac{5a2}{3}$.

2. Уменьшите показатели степеней в $\frac{6×6}{3×5}$. Ответ: $\frac{2x}{1}$ или 2x.

3. Уменьшите показатели степеней a2/a3 и a-3/a-4 и приведите к общему знаменателю.
a2.a-4 есть a-2 первый числитель.
a3.a-3 есть a0 = 1, второй числитель.
a3.a-4 есть a-1, общий числитель.
После упрощения: a-2/a-1 и 1/a-1.

4. Уменьшите показатели степеней 2a4/5a3 и 2/a4 и приведите к общему знаменателю.
Ответ: 2a3/5a7 и 5a5/5a7 или 2a3/5a2 и 5/5a2.

5. Умножьте (a3 + b)/b4 на (a – b)/3.

6. Умножьте (a5 + 1)/x2 на (b2 – 1)/(x + a).

7. Умножьте b4/a-2 на h-3/x и an/y-3.

8. Разделите a4/y3 на a3/y2. Ответ: a/y.

9. Разделите (h3 – 1)/d4 на (dn + 1)/h.

Источник: https://www.math10.com/ru/algebra/slogenie-vichitanie-umnozhenie-delenie-stepeney.html

Правила умножения чисел со степенями

Правила умножения чисел со степенями

Правила умножения чисел со степенями

Обратная задача — внесение множителя под знак корня.

Например,

10. Уничтожение иррациональности в знаменателе дроби. Рассмотрим некоторые типичные случаи.

а) , так как .

Например, .

б)

Например,

в)

и т. д.

11. Применение тождеств сокращённого умножения к действиям с арифметическими корнями:

1) ;

2) ;

3)

К началу страницы

Другие темы в блоке «Школьная математика»

Действия с дробями

Решение квадратных уравнений

Решение дробных уравнений с преобразованием в квадратное уравнение

Свойства степени с натуральным показателем

1.

При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остаётся прежним:

.

Например, .

3. При возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним:

.

Например, .

4. Степень произведения равна произведению степеней множителей:

.

Например, .

5.
Степень частного равна частному степеней делимого и делителя:

.

Например, .

Пример 1. Найти значение выражения

.

Решение. В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания.

Правило умножения чисел с одинаковыми степенями

Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где (правило извлечения корня из произведения).

Что делать со степенями при сложении и вычитании числа?

Если , то (правило извлечения корня из дроби).

3. Если , то (правило извлечения корня из корня).

4. Если , то (правило возведения корня в степень).

5.
Если , то , где , т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.

6. Если , то , т. е. большему положительному подкоренному выражению соответствует и большее значение корня.

7. Все указанные выше формулы часто применяются в обратном порядке (т.
е. справа налево). Например:

(правило умножения корней),

(правило деления корней),

.

8. Правило вынесения множителя из-под знака корня. При .

9.

Теперь получим:

В данном примере были использованы первые четыре свойства степени с натуральным показателем.

Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения производной параметрически заданной функции и производной функции, заданной неявно.

Нет времени вникать в решение? Можно заказать работу!

Степень с целым и дробным показателем

Имеют место следующие тождества:

1) ;

2) ;

3) .

Выполнить действия со степенями самостоятельно, а затем посмотреть решения

Пример 2. Найти значение выражения

.

Пример 3. Найти значение выражения

.

Правила умножения чисел со степенями онлайн

Внимание

Уменьшите показатели степеней в $\frac{6×6}{3×5}$. Ответ: $\frac{2x}{1}$ или 2x.

3. Уменьшите показатели степеней a2/a3 и a-3/a-4 и приведите к общему знаменателю. a2.a-4 есть a-2 первый числитель. a3.a-3 есть a0 = 1, второй числитель. a3.a-4 есть a-1, общий числитель. После упрощения: a-2/a-1 и 1/a-1.

4. Уменьшите показатели степеней 2a4/5a3 и 2/a4 и приведите к общему знаменателю.

Ответ: 2a3/5a7 и 5a5/5a7 или 2a3/5a2 и 5/5a2.

5. Умножьте (a3 + b)/b4 на (a — b)/3.

6. Умножьте (a5 + 1)/x2 на (b2 — 1)/(x + a).

7. Умножьте b4/a-2 на h-3/x и an/y-3.

8. Разделите a4/y3 на a3/y2.

Ответ: a/y.

9.

Правила умножения чисел со степенями и буквами

мы хотим определить отрицательные степени как-то иначе, но так, чтобы по-прежнему выполнялось равенство при всех тип. Оказывается, что это невозможно. В самом деле, при должно быть , т.е. . Следовательно, . Но тогда из с неизбежностью вытекает, что

Что получится, если степень вновь возвести в степень? Например,

Аналогично,

для любых положительных целых . И вновь ттяттпт соглашения об отрицательных степенях «думают за нас»: оказывается, что эта же формула верна и для отрицательных . Например,

Задача 58. Проверьте эту формулу для других комбинаций знаков (если если оба числа тип отрицательны; если одно из них равно нулю).

Еще одна, последняя, формула такова:

Задача 59. Проверьте эту формулу при положительных и отрицательных целых .

Задача 60.

Следовательно, нашу задачу можно записать по-другому: 42х43=45 или 24х26=210, и каждый раз мы получаем 1024.

Мы можем решить ряд аналогичных примеров и увидим, что умножение чисел со степенями сводится к сложению показателей степени, или экспонент, разумеется, при том условии, что основания сомножителей равны.

Таким образом, мы можем, не производя умножения, сразу сказать, что 24х22х214=220.

Это правило справедливо также и при делении чисел со степенями, но в этом случае экспонента делителя вычитается из экспоненты делимого. Таким образом, 25:23=22, что в обычных числах равно 32:8=4, то есть 22.

Правила умножения чисел со степенями с разными основаниями

Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где (правило извлечения корня из произведения).

2. Если , то (правило извлечения корня из дроби).

3. Если , то (правило извлечения корня из корня).

4.

Если , то (правило возведения корня в степень).

5. Если , то , где , т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.

6. Если , то , т. е. большему положительному подкоренному выражению соответствует и большее значение корня.

7.

Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например:

(правило умножения корней),

(правило деления корней),

.

8. Правило вынесения множителя из-под знака корня. При .

9.

Правила умножения чисел со степенями разными основания

Экспоненциальные числа открывают большие возможности, они позволяют нам преобразовать умножение в сложение, а складывать гораздо легче, чем умножать.

Например, нам надо умножить 16 на 64. Произведение от умножения этих двух чисел равно 1024.

Источник: http://advokat-martov.ru/pravila-umnozheniya-chisel-so-stepenyami

Степень — свойства, правила, действия и формулы

Правила умножения чисел со степенями

1001student.ru > Математика > Степень — свойства, правила, действия и формулы

Одной из главных характеристик в алгебре, да и во всей математике является степень. Конечно, в 21 веке все расчеты можно проводить на онлайн-калькуляторе, но лучше для развития мозгов научиться делать это самому.

В данной статье рассмотрим самые важные вопросы, касающиеся этого определения. А именно, поймем что это вообще такое и каковы основные его функции, какие имеются свойства в математике.

Рассмотрим на примерах то, как выглядит расчет, каковы основные формулы. Разберем основные виды величины и то, чем они отличаются от других функций.

Поймем, как решать с помощью этой величины различные задачи. Покажем на примерах, как возводить в нулевую степень, иррациональную, отрицательную и др.

  • Онлайн-калькулятор возведения в степень
  • Что такое степень числа
  • Таблица степеней от 1 до 10
  • Свойства степеней
  • Степень с отрицательным показателем
  • Степень с натуральным показателем
  • Дробная степень
  • Степень с иррациональным показателем
  • Заключение

Что такое степень числа

Что же подразумевают под выражением «возвести число в степень»?

Степенью n числа а является произведение множителей величиной а n-раз подряд.

Математически это выглядит следующим образом:

an = a * a * a * …an.

Причем, левая часть уравнения будет читаться, как a в степ. n.

Например:

  • 23 = 2 в третьей степ. = 2 * 2 * 2 = 8;
  • 42 = 4 в степ. два = 4 * 4 = 16;
  • 54 = 5 в степ. четыре = 5 * 5 * 5 * 5 = 625;
  • 105 = 10 в 5 степ. = 10 * 10 * 10 * 10 * 10 = 100000;
  • 104 = 10 в 4 степ. = 10 * 10 * 10 * 10 = 10000.

Ниже будет представлена таблица квадратов и кубов от 1 до 10.

Таблица степеней от 1 до 10

Ниже будут приведены результаты возведения натуральных чисел в положительные степени – «от 1 до 100».

Ч-ло2-ая ст-нь3-я ст-нь
111
248
3927
41664
525125
636216
749343
864512
981279
101001000

Свойства степеней

Что же характерно для такой математической функции? Рассмотрим базовые свойства.

Учеными установлено следующие признаки, характерные для всех степеней:

  • an * am = (a)(n+m);
  • an : am = (a)(n-m);
  • (ab ) m=(a)(b*m).

Проверим на примерах:

23 * 22 = 8 * 4 = 32. С другой стороны 25 = 2 * 2 * 2 * 2 * 2 =32.

Аналогично: 23 : 22 = 8 / 4 =2. Иначе 23-2 = 21 =2.

(23)2 = 82 = 64. А если по-другому? 26 = 2 * 2 * 2 * 2 * 2 * 2 = 32 * 2 = 64.

Как видим, правила работают.

А как же быть со сложением и вычитанием? Всё просто. Выполняется сначала возведение в степень, а уж потом сложение и вычитание.

Посмотрим на примерах:

  • 33 + 24 = 27 + 16 = 43;
  • 52 – 32 = 25 – 9 = 16. Обратите внимание: правило не будет выполняться, если сначала произвести вычитание: (5 — 3)2 = 22 = 4.

А вот в этом случае надо вычислять сначала сложение, поскольку присутствуют действия в скобках: (5 + 3)3 = 83 = 512.

Как производить вычисления в более сложных случаях? Порядок тот же:

  • при наличии скобок – начинать нужно с них;
  • затем возведение в степень;
  • потом выполнять действия умножения, деления;
  • после сложение, вычитание.

Есть специфические свойства, характерные не для всех степеней:

  1. Корень n-ой степени из числа a в степени m запишется в виде: am/n.
  2. При возведении дроби в степень: этой процедуре подвержены как числитель, так и ее знаменатель.
  3. При возведении произведения разных чисел в степень, выражение будет соответствовать произведению этих чисел в заданной степени. То есть: (a * b)n = an * bn.
  4. При возведении числа в отрицательную степ., нужно разделить 1 на число в той же ст-ни, но со знаком «+».
  5. Если знаменатель дроби находится в отрицательной степени, то это выражение будет равно произведению числителя на знаменатель в положительной степени.
  6. Любое число в степени 0 = 1, а в степ. 1 = самому себе.

Эти правила важны в отдельных случаях, их рассмотрим подробней ниже.

Степень с отрицательным показателем

Что делать при минусовой степени, т. е. когда показатель отрицательный?

Исходя из свойств 4 и 5 (смотри пункт выше), получается:

A(-n) = 1 / An, 5(-2) = 1 / 52 = 1 / 25.

И наоборот:

1 / A(-n) = An, 1 / 2(-3) = 23 = 8.

А если дробь?

(A / B)(-n) = (B / A)n, (3 / 5)(-2) = (5 / 3)2 = 25 / 9.

Степень с натуральным показателем

Под ней понимают степень с показателями, равными целым числам.

Что нужно запомнить:

A0 = 1, 10 = 1; 20 = 1; 3.150 = 1; (-4)0 = 1…и т. д.

A1 = A, 11 = 1; 21 = 2; 31 = 3…и т. д.

Кроме того, если (-a)2n+2, n=0, 1, 2…то результат будет со знаком «+». Если отрицательное число возводится в нечетную степень, то наоборот.

Общие свойства, да и все специфические признаки, описанные выше, также характерны для них.

Дробная степень

Этот вид можно записать схемой: Am/n. Читается как: корень n-ой степени из числа A в степени m.

С дробным показателем можно делать, что угодно: сокращать, раскладывать на части, возводить в другую степень и т. д.

Степень с иррациональным показателем

Пусть α – иррациональное число, а А ˃ 0.

Чтобы понять суть степени с таким показателем, рассмотрим разные возможные случаи:

  • А = 1. Результат будет равен 1. Поскольку существует аксиома – 1 во всех степенях равна единице;
  • А˃1.

Аr1 ˂ Аα ˂ Аr2, r1 ˂ r2 – рациональные числа;

В этом случае наоборот: Аr2 ˂ Аα ˂ Аr1 при тех же условиях, что и во втором пункте.

Например, показатель степени число π. Оно рациональное.

r1 – в этом случае равно 3;

r2 – будет равно 4.

Тогда, при А = 1, 1π = 1.

А = 2, то 23 ˂ 2π ˂ 24, 8 ˂ 2π ˂ 16.

А = 1/2, то (½)4 ˂ (½)π ˂ (½)3, 1/16 ˂ (½)π ˂ 1/8.

Для таких степеней характерны все математические операции и специфические свойства, описанные выше.

Заключение

Подведём итоги — для чего же нужны эти величины, в чем преимущество таких функций? Конечно, в первую очередь они упрощают жизнь математиков и программистов при решении примеров, поскольку позволяют минимизировать расчеты, сократить алгоритмы, систематизировать данные и многое другое.

Где еще могут пригодиться эти знания? В любой рабочей специальности: медицине, фармакологии, стоматологии, строительстве, технике, инженерии, конструировании и т. д.

Источник: https://1001student.ru/matematika/stepen.html

Свойства степени

Правила умножения чисел со степенями
Что такое степень числа Свойства степени Возведение в степень дроби

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1
Произведение степеней

Запомните!

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

am · an = am + n, где «a» — любое число, а «m», «n» — любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

Примеры.

  • Упростить выражение. b · b2 · b3 · b4 · b5 = b 1 + 2 + 3 + 4 + 5 = b15
  • Представить в виде степени. 615 · 36 = 615 · 62 = 615 · 62 = 617
  • Представить в виде степени. (0,8)3 · (0,8)12 = (0,8)3 + 12 = (0,8)15

Важно!

Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями. Оно не относится к их сложению.

Нельзя заменять сумму (33 + 32) на 35. Это понятно, если
посчитать (33 + 32) = (27 + 9) = 36 , а 35 = 243

Свойство № 2
Частное степеней

Запомните!

При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

= am − n, где «a» — любое число, не равное нулю, а «m», «n» — любые натуральные числа такие, что «m > n».

Примеры.

  • Записать частное в виде степени (2b)5 : (2b)3 = (2b)5 − 3 = (2b)2
  • Вычислить. = 113 − 2 · 4 2 − 1 = 11 · 4 = 44
  • Пример. Решить уравнение. Используем свойство частного степеней. 38 : t = 34t = 38 : 34t = 38 − 4t = 34 Ответ: t = 34 = 81

Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

  • Пример. Упростить выражение. 45m + 6 · 4m + 2 : 44m + 3 = 45m + 6 + m + 2 : 44m + 3 = 46m + 8 − 4m − 3 = 42m + 5
  • Пример. Найти значение выражения, используя свойства степени. = = = = = 211 − 5 = 2 6 = 64

Важно!

Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

Нельзя заменять разность (43 −42) на 41. Это понятно, если посчитать (43 −42) = (64 − 16) = 48, а 41 = 4

Будьте внимательны!

Запомните!

При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

(an)m = an · m, где «a» — любое число, а «m», «n» — любые натуральные числа.

  • Пример. (a4)6 = a4 · 6 = a24
  • Пример. Представить 320 в виде степени с основанием 32.По свойству возведения степени в степень известно, что при возведении в степень показатели перемножаются, значит:

Запомните!

При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

(a · b)n = an · bn, где «a», «b» — любые рациональные числа; «n» — любое натуральное число.

  • Пример 1. (6 · a2 · b3 · c )2 = 62 · a2 · 2 · b3 · 2 · с 1 · 2 = 36 a4 · b6 · с 2
  • Пример 2. (−x2 · y)6 = ( (−1)6 · x2 · 6 · y1 · 6) = x12 · y6

Важно!

Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

(an · bn)= (a · b) n

То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

  • Пример. Вычислить. 24 · 54 = (2 · 5)4 = 104 = 10 000
  • Пример. Вычислить. 0,516 · 216 = (0,5 · 2)16 = 1

В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

Например, 45 · 32 = 43 · 42 · 32 = 43 · (4 · 3)2 = 64 · 122 = 64 · 144 = 9216

Пример возведения в степень десятичной дроби.

421 · (−0,25)20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25))20 = 4 · (−1)20 = 4 · 1 = 4 Запомните!

Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

(a : b)n = an : bn, где «a», «b» — любые рациональные числа, b ≠ 0, n — любое натуральное число.

  • Пример. Представить выражение в виде частного степеней. (5 : 3)12 = 512 : 312

Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

Источник: http://math-prosto.ru/?page=pages%2Fstepeni%2Fstepeni2.php

Действия с многочленами

Правила умножения чисел со степенями

Мы уже разобрали, что из себя представляют многочлены. В рамках данной статьи мы расскажем, как правильно вычитать, умножать, складывать и делить подобные выражения, а также как возводить их в натуральную степень, т.е. определим правила совершения данных действий с многочленами.

Yandex.RTB R-A-339285-1

Складывать и вычитать многочлены достаточно просто. Оба эти действия рассматриваются вместе, поскольку осуществляются по одним и тем же принципам:

  1. Начинаем с правильной записи суммы или разности исходных многочленов. Для этого их надо заключить в скобки и поместить между ними нужный знак.
  2. Далее выполняем раскрытие скобок и получаем новый многочлен.
  3. После этого нужно привести многочлен к стандартному виду (если это необходимо).

Поясним алгоритм примером.

Пример 1

Условие: выполните сложение и вычитание двух многочленов x·y−x2+2 и 7·x2−1 .

Решение

Сначала выполним сложение. Записываем сумму:

(7·x2−1)+(x·y−x2+2)

Раскрываем скобки и получаем новый многочлен в следующей форме:

7·x2−1+x·y−x2+2

Нам осталось только привести результат к стандартному виду:

7·x2−1+x·y−x2+2=6·x2+1+x·y

Далее проводим вычитание по аналогии со сложением:

(7·x2−1)−(x·y−x2+2)=7·x2−1−x·y+x2−2=8·x2−3−x·y

Ответ: (7·x2−1)+(x·y−x2+2)=6·x2+1+x·y и (7·x2−1)−(x·y−x2+2)=8·x2−3−x·y.

Другие примеры вы можете найти в отдельной статье, посвященной сложению и вычитанию многочленов.

Правила умножения одного многочлена на другой

Перейдем к рассмотрению следующего действия – умножения. Основное правило его выполнения основано на распределительном свойстве умножения. С его помощью мы можем свести умножение многочленов к последовательному перемножению всех их членов друг на друга. Запишем правило:

Определение 1

Чтобы умножить один многочлен на другой, необходимо выполнить умножение каждого члена первого множителя на каждый член второго множителя, после чего провести сложение итоговых произведений.

Результатом умножения двух многочленов друг на друга будет новый многочлен.

Пример 2

Условие: выполните умножение двух многочленов  a−b и −3·a+b.

Решение

Начнем с записи произведения.

(a−b)·(−3·a+b)

После этого нам нужно взять первый член первого многочлена (т.е. a) и перемножить его с каждым членом второго многочлена. У нас получится a·(−3·a) и a·b. То же самое проделаем и со вторым членом. В итоге мы пришли к произведениям −b·(−3·a) и −b·b. Теперь складываем все, что у нас получилось:

a·(−3·a)+a·b−b·(−3·a)−b·b=−3·a2+4·a·b−b2

Вот запись всего решения:

(a−b)·(−3·a+b)==a·(−3·a)+a·b−b·(−3·a)−b·b==−3·a2+4·a·b−b2

Ответ: (a−b)·(−3·a+b)=−3·a2+4·a·b−b2.

Мы также можем выполнить умножение многочлена на одночлен. Это можно рассматривать как частный случай умножения, приведенного выше. Советуем прочесть отдельную статью об умножении многочленов, где представлены более подробные теоретические положения и приведены более сложные примеры.

Правила возведения многочлена в степень

После того, как мы разобрались с правилами умножения многочленов, можем перейти к возведению в натуральную степень. Это действие может быть приравнено к умножению имеющегося многочлена на аналогичный  столько раз, сколько написано в показателе. Так, возведению 3·x+1  в степень 4 мы можем поставить в соответствие произведение 4-х многочленов: (3·x+1)·(3·x+1)·(3·x+1)·(3·x+1).

Пример 3

Условие: выполните возведение многочлена 2·a·b−b3  в квадрат.

Решение

представим эту степень как произведение двух одинаковых множителей и вычислим нужный результат.

(2·a·b−b3)2==(2·a·b−b3)·(2·a·b−b3)= =2·a·b·(2·a·b)+2·a·b·(−b3)−b3·(2·a·b)−b3·(−b3)==4·a2·b2−4·a·b4+b6

Ответ: (2·a·b−b3)2=4·a2·b2−4·a·b4+b6.

Подводя итог этого пункта, отметим, что возведение в степень можно выполнять намного быстрее, если пользоваться формулами сокращенного умножения. Советуем вам изучить эту тему более подробно.

Правила деления многочлена на многочлен

Мы уже выяснили, что результатом всех рассмотренных действий является новый многочлен. Действие деления отличается от них тем, что чаще всего его результат не будет многочленом. Так, если мы разделим x·y−1  на x2+y2 , то в итоге у нас получится дробь x·y-1×2+y2.

Однако в принципе получить в результате многочлен можно, например, здесь: (x2·y+x·y2−x+x·y+y2−1):(x+1)=x·y+y2−1. В таких случаях мы можем говорить о делимости одного многочлена на другой, так же, как мы отмечали это для целых чисел.

Тогда при делении нам нужно представить делимый многочлен в виде произведения двух многочленов – делителя и частного от деления. Во взятом нами примере делимое x2·y+x·y2−x+x·y+y2−1  рассматривается как произведение (x+1)·(x·y+y2−1).

Если у обоих многочленов есть только одна переменная, то тогда речь идет о делении без остатка. Сформулируем правило для многочлена, включающего в себя одну действительную переменную x. Обозначим данный многочлен P(x).

Определение 2

Деление многочлена P(x) на другой многочлен M(x), без остатка происходит тогда, когда есть другой многочлен Q(x) , удовлетворяющий условию P(x)=M(x)·Q(x).

Так, мы можем разделить x3+2·x2+3·x+6 на x+2 без остатка в силу существования многочлена x2+3. Тогда равенство x3+2·x2+3·x+6=(x+2)·(x2+3) будет справедливым.

А вот x2+1  поделить на x3−5  без остатка мы не сможем, поскольку нет такого Q(x), которое подошло бы для равенства x2+1=(x3−5)·Q(x).

Деление без остатка есть частный случай деления с остатком, ведь при нем мы также получаем остаток, равный 0.

В общем случае можно сказать, что когда мы делим многочлен P(x) степени n, которая будет больше единицы, на другой многочлен Q(x)  степени k (причем 1≤k≤n), мы получаем в итоге новый многочлен M(x)  степени n−k и остаток в виде многочлена R(x), степень которого будет меньше, чем k. Представим данное утверждение как теорему.

Определение 3

Мы можем представить любой многочлен P(x) степени n (n≥1) как P(x)=M(x)·Q(x)+R(x). Здесь Q(x)  будет некоторым многочленом степени k (1≤k≤n), M(x) – многочленом степени n−k и R(x) – многочленом степени, меньшей k. Это представление будет единственным.  

Под  Q(x), M(x) и R(x) в данном случае понимается любой многочлен из множества тождественно равных многочленов.

Так, если мы делим 3·x4+2·x2−1 на x2+x , то у нас получится частное 3·x2−3·x+5  с остатком −5·x−1.

Это так, потому что равенство 3·x4+2·x2−1=(x2+x)·(3·x2−3·x+5)−5·x−1 является справедливым. Его справедливость легко проверить, выполнив все нужные действия с правой стороны.

Если мы делим P(x) на Q(x), причем степень делимого будет больше степени делителя, то в итоге мы всегда получаем частное в виде нулевого многочлена и остаток, равный делимому. Так, разделив x2+1 на x3+2·x2−1, мы получим нулевое частное и остаток x2+1.

Удобно производить деление, предварительно  сделав запись уголком, так же, как мы делаем это для целых чисел. Подробнее это действие разобрано в статье, посвященной делению многочлена на многочлен.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/matematika/vyrazhenija/dejstvija-s-mnogochlenami/

Правила умножения и деления чисел со степенями

Так что из этого правда? Математики решили не связываться и отказались возводить ноль в нулевую степень. То есть теперь нам нельзя не только делить на ноль, но и возводить его в нулевую степень.

Поехали дальше. Кроме натуральных чисел и числа к целым относятся отрицательные числа.
Чтобы понять, что такое отрицательная степень, поступим как в прошлый раз: домножим какое-нибудь нормальное число на такое же в отрицательной степени:

Отсюда уже несложно выразить искомое :

Теперь распространим полученное правило на произвольную степень:

Итак, сформулируем правило:

Число в отрицательной степени обратно такому же числу в положительной степени. Но при этом основание не может быть нулевым: (т.к.

Степень с отрицательным основанием

До этого момента мы обсуждали только то, каким должен быть показатель степени.

Но каким должно быть основание?

В степенях с натуральным показателем основание может быть любым числом.

Отдел права
Добавить комментарий